首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11351篇
  免费   804篇
  国内免费   432篇
电工技术   159篇
综合类   509篇
化学工业   5287篇
金属工艺   1333篇
机械仪表   455篇
建筑科学   861篇
矿业工程   110篇
能源动力   62篇
轻工业   445篇
水利工程   67篇
石油天然气   153篇
武器工业   100篇
无线电   1041篇
一般工业技术   1526篇
冶金工业   269篇
原子能技术   20篇
自动化技术   190篇
  2024年   22篇
  2023年   145篇
  2022年   206篇
  2021年   275篇
  2020年   265篇
  2019年   289篇
  2018年   237篇
  2017年   324篇
  2016年   328篇
  2015年   310篇
  2014年   508篇
  2013年   983篇
  2012年   635篇
  2011年   679篇
  2010年   568篇
  2009年   614篇
  2008年   525篇
  2007年   713篇
  2006年   712篇
  2005年   581篇
  2004年   540篇
  2003年   468篇
  2002年   398篇
  2001年   373篇
  2000年   280篇
  1999年   258篇
  1998年   211篇
  1997年   167篇
  1996年   180篇
  1995年   183篇
  1994年   133篇
  1993年   121篇
  1992年   105篇
  1991年   53篇
  1990年   33篇
  1989年   49篇
  1988年   28篇
  1987年   32篇
  1986年   10篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   12篇
  1981年   3篇
  1979年   1篇
  1976年   1篇
  1964年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
41.
The interfacial oxidation behavior of Cr4Mo4V high-speed steel (HSS) joints undergoing hot-compression bonding was investigated by using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In the heating and holding processes, dispersed rod-like and granular $\delta - {\text{Al}}_{{2}} {\text{O}}_{{3}}$ oxides were formed at the interface and in the matrix near the interface due to the selective oxidation and internal oxidation of Al, while irregular Si–Al–O compounds and spheroidal SiO2 particles were formed at the interface. After the post-holding treatment, SiO2 oxides and Si–Al–O compounds were dissolved into the matrix, and $\delta - {\text{Al}}_{{2}} {\text{O}}_{{3}}$ oxides were transformed into nanoscale $\alpha - {\text{Al}}_{{2}} {\text{O}}_{{3}}$ particles, which did not deteriorate the mechanical properties of the joints. The formation and migration of newly-formed grain boundaries by plastic deformation and post-holding treatment were the main mechanism for interface healing. The tensile test results showed that the strength of the healed joints was comparable to that of the base material, and the in-situ tensile observations proved that the fracture was initiated at the grain boundary of the matrix rather than at the interface. The clarification of interfacial oxides and microstructure is essential for the application of hot-compression bonding of HSSs.  相似文献   
42.
In this study, the mechanical properties of composite bituminous structures with geogrid products, used as an interlayer between different types of bituminous mixtures, at a constant temperature, were examined. A twofold experimental program based on new approaches was selected. A new configuration of the 3-Point Bending Test (3-PBT) was adopted to capture the J-integral and crack resistance property defined by crack resistance index (CRI) at the interface against bottom-up crack propagation. The bonding quality at the interface was also defined through a new index named coefficient of interface bonding (CIB), which was measured via a modified version of the slant shear device. The results derived from this research revealed that reinforcement of the interface, with varying degree of surface texture, by geogrid products significantly enhances the fracture toughness of the whole system in terms of the J-integral, which could be properly connected to the combined functions of bonding quality and crack resistance indices defined at the interface.  相似文献   
43.
对热挤压的钛铜复合棒进行扩散处理,研究扩散退火温度及保温时间对界面结合强度的影响,并通过测试Ti和Cu在高温下的拉伸性能来选择较为合适的热轧温度。结果表明:扩散退火可有效促进界面处金属原子的扩散和增强结合强度,当扩散退火在780~800 ℃/30 min时复合界面的结合强度最高;钛铜复合棒热轧温度应选择780 ℃较为合适,此时Ti、Cu的强度和塑性指标相近,利于热轧时的均匀变形;钛铜复合棒的热轧结合机理可用N.Bay理论、热作用机制及位错学说进行解释。  相似文献   
44.
The (Cu−10Sn)−Ni−MoS2 composites, prepared by powder metallurgy, were studied for the effects of Ni-coated MoS2 on the microstructure, mechanical properties and lubricating properties. The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately. The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix, and greatly improves the bonding of the matrix. The composites with 12 wt.% Ni-coated MoS2 (C12) show the optimum performance including the mechanical properties and tribological behaviors. Under oil lubrication conditions, the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s. The average dry friction coefficient, sliding against 40Cr steel disc, is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa, respectively.  相似文献   
45.
Mullite coating, SiC whiskers toughened mullite coating (SiCw-mullite), and cristobalite aluminum phosphate (c-AlPO4) particle modified SiCw-mullite coating (c-AlPO4-SiCw-mullite) were prepared on SiC coated C/SiC composites using a novel sol-gel method combined with air spraying. Results show that molten SiO2 formed by the oxidation of SiC whiskers and molten c-AlPO4 improved the bonding strength between mullite outer coating and SiC–C/SiC composites due to their high-temperature bonding properties. The bonding strength between mullite, SiCw-mullite, c-AlPO4-SiCw-mullite outer coatings and SiC–C/SiC composites were 2.41, 4.31, and 7.38 MPa, respectively. After 48 thermal cycles between 1773 K and room temperature, the weight loss of mullite/SiC coating coated C/SiC composites was up to 11.61%, while the weight losses of SiCw-mullite/SiC and c-AlPO4-SiCw-mullite/SiC coatings coated C/SiC composites were reduced to 7.40% and 5.12%, respectively. The addition of appropriate SiC whiskers can considerably improve the thermal shock resistance of mullite coating owing to their excellent mechanical properties at high temperature. In addition, c-AlPO4 particles can further improve the thermal shock resistance of SiCw-mullite coating due to their high-temperature bonding and sealing properties. No obvious micro-pores and cracks were observed on the surface of c-AlPO4-SiCw-mullite coating after 48 thermal cycles due to timely healing effect by formation of secondary mullite.  相似文献   
46.
就目前主流的冷喷涂颗粒结合形成机理进行了系统总结和评述,为冷喷涂沉积体性能的调控和后续研究提供借鉴。分别就经典的颗粒界面绝热剪切失稳结合机理,颗粒界面应力波释放诱导材料射流形成结合机理,以及高速碰撞诱导颗粒表面氧化膜破碎、新鲜金属接触结合机理的基本概念、原理、特点进行了概括总结。通过大量系统文献的调研,指出现有理论目前存在的相悖和不足之处,并简要分析了现有颗粒间结合形成理论对冷喷涂沉积体质量调控方面的指导意义。最后基于现有研究的不足,对冷喷涂颗粒界面结合机制方面的研究进行了展望。  相似文献   
47.
Canola is widely grown in the northern latitudes for its vegetable oil, generating large quantities of residual, low value canola flour used as animal feed. The common wood adhesive poly(diphenylmethylene diisocyanate) (pMDI) should react with the wide variety of functional groups in proteins. Therefore, it would seem that canola flour with added pMDI could be an effective adhesive. Two main questions are addressed in this study: How do the wood adhesive properties of canola flour compare to the better-studied soy flour? How well do proteins, which contain an abundance of functional groups, cure with the very reactive pMDI? These questions were addressed using the small-scale adhesive strength test ASTM D-7998, with various adhesive formulations and bonding conditions for canola flour plus pMDI compared to soy adhesives. The more challenging wet cohesive bond strength was emphasized because the dry strengths were usually very good. Generally, soy adhesives were better than canola ones, as was the polyamidoamine-epichlorohydrin cross-linker compared to pMDI, but these generalizations can be altered by the conditions selected. Three-ply plywood tests supported the small-scale test results.  相似文献   
48.
Adhesive pads of geckos contain many thousands of nanoscale spatulae for the adhesion and movement along vertical or inverted surfaces. Setae are composed of interlaced corneous bundles made of small cysteine‐glycine‐rich corneous beta proteins (CBPs, formerly indicated as beta‐keratins), embedded in a matrix material composed of cytoskeletal proteins and lipids. Negatively charged intermediate filament keratins (IFKs) and positively charged CBPs likely interact within setae, aside disulphide bonds, giving rise to a flexible and resistant corneous material. Using differernt antibodies against CBPs and IFKs an updated model of the composition of setae and spatulae is presented. Immunofluorescence and ultrastructural immunogold labeling reveal that one type of neutral serine‐tyrosine‐rich CBP is weakly localized in the setae while it is absent from the spatula. This uncharged protein is mainly present in the thin Oberhautchen layer sustaining the setae, although with a much lower intensity with respect to the cysteine‐rich CBPs. These proteins in the spatula likely originate a positively charged or neutral contact surface with the substrate but the influence of lipids and cytoskeletal proteins present in setae on the mechanism of adhesion is not known. In the spatula, protein‐lipid complexes may impart the pliability for the attachment and adapt to irregular surfaces. The presence of cysteine‐glycine medium rich CBPs and softer IFKs in alpha‐layers sustaining the setae forms a flexible base for compliance of the setae to substrate and improved adhesion.  相似文献   
49.
Polyvinyl acetate (PVAc) nanocomposites for wood adhesives containing different amounts of colloidal silica nanoparticles (CSNs) were synthesized via in situ one-step emulsion polymerization. The adhesion strength of wood specimens bonded by PVAc nanocomposites was investigated by the tensile test. Thermal properties of PVAc nanocomposites were also characterized by differential scanning calorimetry and thermogravimetric analysis. Rheological and morphological properties of the PVAc nanocomposites were investigated using rheometric mechanical spectrometry and field emission scanning electron microscopy (FESEM), respectively. The obtaining results showed that the shear strength of PVAc nanocomposite including 1 wt. % CSNs has the highest shear and tensile strength about 4.7 and 3.2 MPa, respectively. A small increment of Tg (~3 °C) and considerable increment of the ash content proved the enhancement of PVAc thermal characterization in the presence of CSNs. FESEM results showed uniform dispersion of nanoparticles throughout the PVAc matrix due to using the in situ emulsion polymerization process. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48570.  相似文献   
50.
目的研究断续切削过程温度变化对刀具粘结现象、涂层剥落和刀具磨损的影响。方法搭建了仿铣削加工的断续车削实验平台,采用热电偶法测量了断续切削过程中刀具后刀面在不同速度下的切削温度,利用带有能谱仪(EDS)的扫描电镜(SEM)观察后刀面随速度变化的磨损形貌并分析后刀面磨损区域的元素组成,阐述了后刀面温度和刀具磨损之间的联系,研究了Ti AlN涂层硬质合金刀具断续切削铍铜合金C17200时的后刀面磨损机理。结果随着切削速度的增加,刀具温度在v=500 m/min出现峰值,温度越高,后刀面的涂层剥落和粘结磨损现象越严重,涂层剥落和粘结磨损现象在切削速度为500 m/min时最严重,而后随着刀具温度的降低而减缓,切削速度600 m/min时的涂层剥落和粘结磨损现象相比500 m/min时有所减轻。结论断续切削过程中,刀具持续性地经受"负载-卸载"、"升温-降温"产生的高温、冲击和加工环境的不稳定性,是引起粘结现象、涂层剥落和刀具磨损的主要原因。涂层剥落和粘结磨损是导致铍铜合金断续切削刀具失效的主要磨损形式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号